
Chapter 1

Basic Analysis of Algorithms

Let’s understand how to analyse an algorithm with respect to:-

1. Execution Time

2. Memory Consumed

Big-O Analysis of Algorithms

The Big O notation defines an upper bound of an algorithm, it bounds a function

only from above. For example, consider the case of Insertion Sort. It takes

linear time in best case and quadratic time in worst case. We can safely say that

the time complexity of Insertion sort is . Note that also covers

linear time. Big-O notation tells you how efficient the algorithm is.

Examples

1. Linear Time

const linear_time=n=>{

 for(let i=0;i<n;i++){

 console.log(i)

 }

}

linear_time(5)

//Output

0

1

2

3

4

5

https://www.codecogs.com/eqnedit.php?latex=O(n%5E2)#0

2. Quadratic Time

const quadratic_time=n=>{

 for(let i=0;i<n;i++){

 console.log(i)

 for(let j=i;j<n;j++){

 console.log(j)

 }

 }

}

quadratic_time(5)

//Output

0

1

2

3

4

5

Rules of Big-O Notation:

Let’s represent an algorithm’s complexity as , n represents the number of

inputs, time represents the time needed, and space represents the

space (additional memory) needed for the algorithm. It can be challenging to

calculate . But Big-O notation provides some fundamental rules that help

developers compute for .

● Coefficient rule: - If is , then is , for

any constant > 0.

● Sum rule : If is and is , then

 is .

● Product rule: If is and is , then

 is .

● Polynomial rule: If is a polynomial of degree k, then is

.

● Log of a power rule: is for any constant .

Coefficient Rule:

If is , then is , for any constant > .

 function x(n){

 var count =0;

 for (var i=0;i<n;i++){

 count+=1;

 }

 return count;

 }

This block of code has this is because it adds to count times.

Therefore, this function is . Here's another example code block for

 :

 function y(n){

 var count =0;

 for (var i=0;i<2*n;i++){

 count+=1;

 }

 return count;

 }

This block has . After all, the first two examples both have a

Big-O notation of or from the above coefficient rule.

Sum Rule:

The sum rule is intuitive to understand — time complexities can be added.

Imagine a master algorithm that involves two other algorithms — the Big-O

notation of that master algorithm is simply the sum of the other two Big-O

notations.

Note: It is important to remember to apply the coefficient rule after applying

this rule.

Look at the code below:

 function z(n){

 var count =0;

 for (var i=0;i<n;i++){

 count+=1;

 }

 for (var i=0;i<5*n;i++){

 count+=1;

 }

 return count;

 }

According to Sum rule it should be and .

This results to because but abiding to

Coefficient rule it is as is , then

is .

Product Rule:

The product rule simply states how Big-Os can be multiplied.

The following code block demonstrates a function with two nested for loops

(remember that this is a quadratic time inside product rule):

 function (n){

 var count =0;

 for (var i=0;i<n;i++){

 count+=1;

 for (var i=0;i<2*n;i++){

 count+=1;

 }

 }

 return count;

 }

In this example, because the second loop has which runs

 times. Therefore, this results in a total of operations. Applying the

coefficient rule, the result is that .

Polynomial Rule:

The polynomial rule states that polynomial time complexities have a Big-O

notation of the same polynomial degree.

If is a polynomial of degree k, then is .

The following code block has only one for loop with quadratic time complexity

(quadratic time because is equal to 2 loop):

 function a(n){

 var count =0;

 for (var i=0;i<n*n;i++){

 count+=1;

 }

 return count;

 }

In this example, because the first loop runs iterations which

is equivalent in accord to polynomial rule is a polynomial of degree ,

then is .

Master Theorem

The master theorem states the following:

 Given a recurrence relation of the form

 Where and

 is the coefficient that is multiplied by the recursive call. is the logarithmic

term, which is the term that divides the during the recursive call. Finally, is

the polynomial term on the nonrecursive component of the equation.

The first case is when the polynomial term is less than

https://www.codecogs.com/eqnedit.php?latex=a#0
https://www.codecogs.com/eqnedit.php?latex=b#0
https://www.codecogs.com/eqnedit.php?latex=n#0
https://www.codecogs.com/eqnedit.php?latex=c#0

Case 1: If then

Case 2: If then

Case 3: If then

Things you learnt:

● Analysis of an algorithm with Big-O notation.

● Adding up Big-O Notations.

● Multiplying Big-O Notations.

● Master Theorem.

1

1
 Credit: www.geeksforgeeks.org

